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Abstract: In this paper, we present a general method for rank-constrained optimization. We
use an iterative convex optimization procedure where it is possible to include any extra convex
constraints. The proposed approach has potential application in several areas. We focus on the
problem of Factor Analysis. In this case, our approach provides sufficient flexibility to handle
correlated errors. The benefits of the method is demonstrated via a simulation study.

1. INTRODUCTION

Rank-Constrained Optimization problems are ubiquitous
in science and engineering (see e.g. Markovsky (2012)).
Theses problems arise in areas such as system identifica-
tion, control, statistics and signal processing (Grossmann
et al., 2009; Kim and Moon, 2006; Markovsky, 2008; ten
Berge and Kiers, 1991).

It is well known, that imposing rank-constraints into op-
timization and feasibility problems is a formidable task.
Moreover, there does not currently exist a general proce-
dure to include rank-constraints into optimization prob-
lems (Markovsky, 2008). Most of the existing methods use
the specific structure of the problem of interest. For exam-
ple, approaches based on Riemannian manifold optimiza-
tion has been applied to linear regressions (Meyer, 2011),
and to solve Lyapunov equations (Vandereycken, 2010).
In addition, other approaches such as GECO (Shalev-
Shwartz et al., 2011) and ADMiRA (Lee and Bresler,
2010) are based on greedy selection. Also, some Newton-
like algorithms has been developed to solve Linear Matrix
Inequalities subject to rank constraints (Orsi et al., 2006).
Moreover, variable projection-type algorithms has been
applied to structured low-rank approximation problems-
Markovsky (2014). However, it is not clear how to extend
these methods to other applications of interest. More re-
cently, an heuristic approach based on the so called nuclear
norm has been extensively used (Fazel, 2001, 2002). How-
ever, in this approach the condition on the rank is not
considered as a hard constraint.

In this paper, we propose an approach to solve convex
optimization problems subject to rank constraints. This
approach allows one to constrain the rank of a matrix,
while minimizing a cost function. In addition, it is pos-
sible to include any additional convex contraint into the
proposed approach. We show the benefits of the proposed
approach in a Factor Analysis problem that considers
correlated errors.

The layout of remainder of the paper is as follows. In
Section 2, we discuss the problem of interest. In Section
3, the proposed approach is presented. Section 4 presents

an application to Factor Analysis in presence of correlated
errors. A simulation study is presented in Section 5, and
finally conclusions are draw in Section 6.

Notation: rankA denotes the rank of a matrix A. λi(A)
denotes the i-th largest eigenvalue of a matrix A, A � 0
denotes that A is positive semidefinite, and A � B denotes
that A − B � 0. We represent the transpose of a given
matrix A via A>. Sn denotes the set of symmetric matrices
of size n×n, and Sn+ the set of symmetric positive definite
matrices, i.e. Sn+ := {A ∈ Sn|A � 0}.

2. PROBLEM DESCRIPTION

Consider the following rank-constrained optimization prob-
lem

Prco : min
θ∈Rp

f(θ)

subject to θ ∈ Ω

rankG(θ) ≤ r
G(θ) ∈ Sn+

where Ω ⊂ Rp is a convex set, f(θ) : Rp → R and
G(θ) : Rp → Sn+ such that θ belongs to a convex set.

The condition G(θ) ∈ Sn+ can be relaxed in order to
consider general non-square real matrices G(θ) (see e.g.
(Dattorro, 2005§4)). However, for the sake of simplicity
this is not considered in this paper.

2.1 Existing Results

Optimization problems subject to rank-constraints are dif-
ficult problems, since they are combinatorial in nature.
However, there are some special cases, such as, uncon-
strained low-rank approximation problem, that admits a
closed-form solution.

Theorem 1. (Eckart and Young, 1936) Given a matrix
X ∈ Rm×n, then the solution of the following low-rank
approximation problem

X̂∗ = arg min
Z
‖X − Z‖F s.t rankZ ≤ r

is given by the truncated Singular Value Decomposition
(SVD), i.e. if X = USV T is a SVD of X, then the



minimizer is given by X̂∗ = U1:rS1:r,1:rV
T
1:r where U1:r

denotes the first r columns of U , and S1:r,1:r denotes the
submatrix composed by the first r rows and the first r
columns of S, i.e. the submatrix containing the r-largest
singular values ofX. Moreover, the minimizer X̂∗ is unique
if and only if σr+1 6= σr.

Eckart-Young theorem has become the cornerstone of
most of existing approaches. one of the main reasons
for this is that the SVD can be efficiently computed in
an numerically robust way. However, for problems such
as structured low-rank approximation, the SVD-based
methods can be seen as relaxation of the original rank-
constrained problem (Markovsky, 2008).

An interesting approach to impose rank constraints has
been proposed in (Dattorro, 2005; Kim and Moon, 2006;
ten Berge and Kiers, 1991) which is related to the ideas
presented in (d’Aspremont, 2003). The main idea is to min-
imize the sum of the smallest eigenvalues i.e. exploits the
equivalence between imposing the constraint rank(G) ≤ r
(with G ∈ Sn+) and imposing the constraint that the sum
of the n− r smallest eigenvalues of G is equal to zero.

In order to describe the idea, we require of the following
definition

Φn,r = {W ∈ Sn, 0 �W � I, trace(W ) = n− r} (1)

This set corresponds to the convex hull of the rank-(n-
r) projection matrices, i.e the smallest convex set that
contain such set of matrices, see e.g. (Dattorro, 2005).
The set Φn,r can be used to compute the sum of the (n-r)
smallest eigenvalues of a matrix by solving an optimization
problem, as follows

Lemma 2. Consider G ∈ Sn whose eigenvalues are
λ1(G) ≥ · · · ≥ λn(G), then

P1 :

n∑
i=r+1

λi(G) = min
W∈Φn,r

trace(W>G)

Proof. Direct from (Overton and Womersley, 1993, The-
orem 3.4) and by considering that

∑n
i=r+1 λi(G) =

trace(G)−
∑r
i=1 λi(G). 2

Notice that Problem P1 has a closed-form solution. In fact,
let us consider the diagonalisation G∗ = QΛQ>, then
the direction matrix W = U∗U∗> is optimal, where U∗

correspond to the directions of Q corresponding to the
n− r smallest entries of the diagonal matrix Λ.

In some cases (for example, when the solution is not
unique), it is preferable to numerically solve P1 rather than
to use the closed-form solution.

In (Dattorro, 2005) Lemma 2 has been used to solve the
following rank-constrained feasibility problem

Pfeas : find
G∈Sn

+

G

subject to G ∈ C
rankG ≤ r,

where C is a convex set. This rank-constrained feasibility
problem Pfeas can be equivalently stated as the following
minimization problem.

P2 : min
G∈Sn

+

min
W∈Φn,r

trace(W>G)

subject to G ∈ C
Problem P2 can be solved by iteratively alternating min-
imization between G and W . In more detail, given a
current estimate of G, Ĝm, at the iteration m. Then, the
optimization update is as follows:

Ŵm+1 = arg

{
min

W∈Φn,r

trace(W>Ĝm)

}
(2)

Ĝm+1 = arg

{
min
G∈Sn

+

trace((Ŵm+1)>G) s.t G ∈ C

}
(3)

The condition under which equivalence between Pfeas and
P2 holds, is given in the following result:

Lemma 3. The rank of a matrix G ∈ Sn+ is less that r, if
and only if, there exists a W ∈ Φn,r, such that

traceW>G = 0 (4)

Proof. From Lemma 2 we have that
n∑

i=r+1

λi(G) ≤ trace(W>G) (5)

and since G ∈ Sn+, we have that
∑n
i=r+1 λi(G) ≥ 0. Then,

(4) provide a sufficient condition for rank(G) ≤ r. The
necessity of (4) follows from the equality between the sum
of the (n-r) smallest eigenvalues of G and the optimal value
of the cost function in problem P1. 2

Condition (4) indicates that feasibility problem Pfeas has
been solved. It remains an open problem to state condi-
tions under which (4) is achieved by iteratively alternating
minimization between G and W in P2. However, there
exist some cases in which alternating minimization of G
and W in problem P2 does not converge to the optimal
solution as is shown in the following example.

Example 1. (Kim and Moon, 2006) Consider the following
feasibility problem were we want to find x1 and x2 such
that

G =

[
x1 0
0 x2

]
; x2 ≥ 1 (6)

and the rankG = 1. Note that the solution of this
feasibility problem is given by x1 = 0 and x2 ≥ 1. If the
initial values for x1 and x2 are such that x2 = 1 and x1 > 1
then, the smallest eigenvalue of G is 1 with corresponding
eigenvector [0 1]>. The optimization problem becomes

minx2 s.t (6),

and its solution can be any x1 ≥ 0 and x2 = 1. Thus x1 is
not guarantee to be zero and the alternating minimization
between G and W does not converge to the correct result.

In order to overcome such cases (Kim and Moon, 2006)
proposes the inclusion of an extra regularization, α trace(G),
in the cost function on P2. Next, the regularization param-
eter α is gradually reduced to zero. This implies that the
speed of convergence of the method is affected by the speed
at which α tends to zero.

In our experience, only a small perturbation on the solu-
tion of the alternating minimization is required to over-
come this special case. In fact, this special case is handled
by solving P1 numerically instead of using the closed-form



Algorithm 1 Method 1 to rank-constrained optimization.

Require: 0 < ε0 ≤ 0.5
Require: θ0 ∈ Ω such that rank(G(θ0)) ≤ r
m← 0
while εm ≥ Tolerance do

Solve problem Pinner.
if in Pinner (trace(W>G(θ)) ≤ Tolerance) then

Denote the solution as θm+1

εm+1 ← εm
else

θm+1 ← θm

εm+1 ← 0.5εm
end if
m← m+ 1

end while
return θ = θm

solution. In fact, including a small perturbation such as the
numerical errors helps to overcome the non-convergence
of the alternating minimization between G and W . Min-
imizing the bilinear term trace(W>G) is known to be
difficult, since it is non-convex. However, there exist global
optimization methods that can be used when a bilinear
term is present in the objective function. See e.g. (Gorski
et al., 2007).

It is worth mentioning that iterations of alternating min-
imization between G and W can be easily implemented
using standard convex optimization software, such as CVX
(Grant et al., 2011).

3. A SOLUTION TO RANK-CONSTRAINED
OPTIMIZATION

In this section, we describe the proposed approach to solve
the Rank-Constrained Optimization problem Prco. This
problem can be solved by using an iterative procedure
that in each iteration solves a feasibility problem. In
more detail, let θm ∈ Ω be the current value of θ ∈ Ω,
at iteration m. Then, problem Prco can be solved, by
iteratively solving the following feasibility problem

Pinner : find
θ∈Rp

θ

subject to f(θ) ≤ f(θm) · (1− εm)

θ ∈ Ω

rank(G(θ)) ≤ r
G(θ) ∈ Sn+

with 0 < εm < 1 is a parameter chosen by the user.
If the feasibility problem Pinner cannot be solved, we
compute εm+1 = 0.5εm and proceed with the algorithm,
until problem Pinner cannot be solved for a sufficiently
small εm.

In the method described above (Method 1), the speed of
convergence is controlled by the value of εm > 0. Note
that, choosing an εm > 0 in Pinner is a mechanism to
reduce f(θ) by a non-negligible amount at each step. The
procedure to problem Prco is described in Algorithm 1.

Notice that the Method 1 can be extended to consider
non-convex functions f(θ) in problem Prco by using the
general optimization framework of MM algorithms (Lange
et al., 2000).

The proposed scheme could be computationally expensive
in the sense that require iterations of Pinner, that is also
solved in an iterative procedure. In order to overcome this
issue, a relaxed version of this algorithm is proposed in the
next section.

3.1 Method 2: Relaxed Rank-Constrained Optimization

In this method (Method 2) a regularization parameter
α > 0 is added to manage the tradeoff between minimizing
the sum of the smallest eigenvalues of G(θ) and the cost
function f(θ). Thus, the relaxed problem is stated as
follows

Prrco : min
θ∈Rp

min
W∈Φn,k

trace(W>G(θ)) + αf(θ)

subject to θ ∈ Ω

G(θ) ∈ Sn+
This problem can be solved by using an iterative alternat-
ing minimization procedure, similar to (2)-(3).

4. APPLICATION EXAMPLE: FACTOR ANALYSIS

The methods described in the previous section are power-
ful tools that can be applied to a large range of optimiza-
tion problems. In order to show the potential of them, we
apply these methods to the problem of Factor Analysis in
presence of correlated errors.

In Factor Analysis (FA) a collection of n random variables
are measured. It is assumed that these variables can
be decomposed in two parts: a common part describing
the co-movement between the random variables, and an
idiosyncratic part describing the individual movement of
each random variable. The common part is modelled as a
linear combination of r random variables, called factors.

Classical FA is based on the strict assumption that id-
iosyncratic movements must be uncorrelated, i.e. the id-
iosyncratic covariance must be diagonal (Chamberlain and
Rotchschild, 1983). There has been a renewed interest in
stating a more general problem that, among others things,
relaxes the assumption of diagonal idiosyncratic covari-
ance. One approach is the “approximate factor model”
(Bai, 2003; Stock and Watson, 2002), where (by intro-
ducing the assumption that n → ∞) “weak” correlation
within the idiosyncratic covariance is allowed. An advan-
tage of this approach is that it provides a theoretical
framework for the use of standard FA tools when “weak”
idiosyncratic correlation is present.

Our proposed method ensures that: (i) the number of fac-
tors is less than a pre-specified bound; (ii) the idiosyncratic
covariance matrix is semidefinite positive; (iii) it allow us
to relax relax the assumption of diagonal idiosyncratic co-
variance, by assuming, instead, that this matrix is sparse.

4.1 Problem formulation

Consider a measured output yk ∈ Rn, latent factors
fk ∈ Rr, idiosyncratic noise vk ∈ Rn, and a model:

yk = Afk + vk (7)

where A ∈ Rn×r is the matrix of factor loadings. We
assume that fk and vk are mutually uncorrelated i.i.d.



zero-mean Gaussian processes, with covariances Γ and Ψ,
respectively. Thus, the measured output yk is an i.i.d. zero
mean Gaussian process with covariance

Σ = AΓA> + Ψ (8)

There are two important issues in (classical) FA: (i) any
rotation of the factors will produce the same output
characteristics, (ii) the components of the idiosyncratic
noise vk must be mutually uncorrelated, i.e. Ψ must be
a diagonal matrix.

Remark 4. The assumption that Ψ is diagonal is consid-
ered very restrictive (Stock and Watson, 2002). Approxi-
mate factor models relax this assumption by considering
that n → ∞, T → ∞. Under this assumption, estimators
(such as principal components and quasi maximum like-
lihood (Doz et al., 2012; Stock and Watson, 2002)) can
be shown to be consistent in the presence of “weak” id-
iosyncratic cross-correlation. However, it has been pointed
out that when n is small, the presence of cross-correlation
could severally deteriorate the performance of such esti-
mators (Boivin and Ng, 2006).

4.2 Existing Methods

In this section we briefly review the more relevant existing
methods for Factor Analysis.

Principal Components Analysis (PCA) A principal com-
ponents estimator minimizes the residual sum of squares∑T
k=1(yk−Afk)>(yk−Afk) subject to that A>A = I. The

Principal Component (PC) estimate Â can be computed
as the eigenvectors corresponding to the r-largest eigenvec-

tors of S =
∑T
t=1 yky

>
k . Then f̂k = (Â>Â)−1A>yk. This

allows one to obtain the PC estimates in a computationally
efficient way. However, there is a drawback, for fixed n
and when T →∞, the PC estimator is inconsistent unless
Ψ = σ2I.

PC estimator can be applied to FA provided the variables
are a-priori normalized, i.e. such that the variables have
unitary covariance. In fact, for the special case that yk
is normally distributed, and Ψ = σ2I the PC estimator
is the maximum likelihood estimator. Also, it has been
shown that when n → ∞ and T → ∞, the PC estimator
is consistent even when there is “weak” cross-correlation
in Ψ. For technical details see (Bai, 2003).

Robust PCA (RPCA) In RPCA, the focus is to discover
the structure of Ψ. In order to achieve this, the cost
function to be minimized is ‖Ψ‖F + α‖Ψ‖1, where the
regularization term α‖Ψ‖1 allows Ψ to have a non-diagonal
structure. Notice that, existing RPCA algorithms do not
ensure Ψ � 0. Thus, they are unsuitable for FA. Moreover,
existing RPCA algorithms, such as (Lin et al., 2009), are
based on the trace heuristic to induce the rank constraint
on AΦA>. Then, the rank of the solution cannot be
specified a priori.

Expectation-Maximization Expectation - Maximization
(EM) algorithms (Dempster et al., 1977) have been suc-
cessfully applied in several areas, such as, system Identifi-
cation (see e.g. (Agüero et al., 2012; Delgado et al., 2012)),
Channel Estimation (see e.g. (Carvajal et al., 2011)) and

the computation of principal components estimates (see
e.g. (Roweis, 1998)).

EM algorithm is a two-step iterative procedure designed to
compute the maximum likelihood estimate. EM algorithms
introduce the concept of complete data. The complete data
is assumed to be composed of a set of measured variables,
Y, and also of a set of unmeasured variables, known as the
hidden variables, H.

In FA, the factors are a natural choice for hidden variables.
An EM algorithm for FA can be described as follows: Given
a current estimate of the parameters (Â, Ψ̂) and setting
Φ = I, then the associated EM iteration is given by:

E-step Compute

µfk|Y = Â>(ÂÂ> + Ψ)−1yk (9)

Σfk|Y = I − Â>(ÂÂ> + Ψ)−1Â (10)

where µfk|Y and Σfk|Y are the mean and covariance of
the factors, conditioned on Y assuming the estimates
(Â, Ψ̂) are available.

M-step

Â =

( T∑
k=1

ykµ
>
fk|Y

)( T∑
k=1

Σfk|Y + µfk|Yµ
>
fk|Y

)−1

(11)

Ψ̂ = diag∗{1/T
T∑
k=1

(yky
>
k − ykµ>fk|YÂ

> − Âµfk|Yy
>
k

+ Â(Σfk|Y + µfk|Yµ
>
fk|Y)Â>)} (12)

where the operator diag∗{M} returns a diagonal matrix
with values equal to the values on the diagonal of M (i.e.
if L = diag∗{M}, thus Lii = Mii and Lij = 0 for i 6= j).

It is well known that EM algorithms converge to a sta-
tionary point of the likelihood function (Dempster et al.,
1977).

Minimum Rank Factor Analysis Minimum Rank Factor
Analysis (MRFA) was originally proposed in (ten Berge
and Kiers, 1991). The approach minimizes the sum of
the smallest n − r eigenvalues of Σ − Ψ. This can be
interpreted as minimizing the unexplained co-movement.
An advantage of MRFA is that includes the constraints
that Σ − Ψ � 0 and Ψ � 0. MRFA can be formulated as
follows:

PMRFA : minimize
Ψ

h(Ψ) =

n∑
i=r+1

λi(Σ−Ψ)

subject to Σ−Ψ � 0

Ψ � 0

Ψ diagonal

The minimum of h(Ψ) coincides with the minimum of the
function

g(Ψ,W ) = trace(W>(Σ−Ψ)) (13)

where W = XX> and X is an N × (n− r) columnwise or-
thonormal matrix (ten Berge and Kiers, 1991). Then (13)
can be monotonically minimized by alternating between
optimizing Ψ and W (Shapiro and ten Berge, 2002; ten
Berge and Kiers, 1991).



Fig. 1. Mean value over Nmc = 100 Monte Carlo simu-
lations on the magnitud of each entry of Ψ̄ for each
method

(a) True (b) PCA

(c) Method 1 (d) Method 2

(e) EM (f) RPCA

4.3 Proposed approach to Factor Analysis with Correlated
Errors

In Classical FA, the idiosyncratic covariance matrix Ψ
must be diagonal. This is considered very restrictive (Doz
et al., 2012). An alternative weaker assumption is to
impose a sparsity assumption, such that, most of the
entries of Ψ are zeros.

In this paper we propose to drop the assumption of
diagonal Ψ, by assuming instead that Ψ is “sparse”. This
problem can be solved by using the methods developed
in Section 3 by using f(Ψ) = ‖Ψ‖1, i.e. by solving the
following optimization problem

P3 : min
Ψ
‖Ψ‖1

subject to Σ−Ψ � 0

Ψ � 0

rank(Σ−Ψ) ≤ r
Notice that, the proposed approach ensures both, that
Ψ � 0, and Σ−Ψ � 0.

Remark 5. A variant of problem P3, could be achieved by
changing the cost function to f(Ψ) = ‖Ψ‖F + β‖Ψ‖1.
Notice it is possible to use different cost functions with
minimal changes in the code.

5. EXAMPLES

Consider model (7)-(8), where r = 3, n = 20, T = 100, Φ =
I and the matrix of factor loadings, A, is constructed as a
random matrix, in which each matrix entry is independent

Table 1. Mean value over Nmc = 100 Monte Carlo
simulations of the performance index dc(·), of ‖Ψ̂‖F and
the execution time (Self-time and time to get initial

estimate plus self-time).

Method dc(·) ‖Ψ̆‖F Self-Time [s] Total Time [s]

PCA 0.1992 23.7653 0.02055 0.02055
Method 1 0.0996 17.6631 170.1203 194.6211
Method 2 0.1001 17.5749 24.4803 24.5008
EM 0.1330 16.6911 0.0093 0.0298
RPCA 0.2260 25.4499 0.3964 0.3964

and normal distributed, i.e Aij ∼ N(0, 1). The covariance
matrix Ψ is constructed such that the matrix entries
Ψij = τ |i−j| with τ = 0.7. In order to adjust the signal
to noise ratio we fix the ratio ‖AA>‖F /‖Ψ‖F = 2.

We runNmc = 100 Monte Carlo simulations, with different
realizations of fk and vk, and different factor loadings, A.

We solve problem P3 using both proposed methods. We
compare the proposed methods against the PCA, the EM
algorithm described in section 4.2.3, and a RPCA method
(Lin et al., 2009). In RPCA we choose a regularization
parameter such that the rank constraint is satisfied. In
Method 2 we chose the regularization parameters as α =
1/
√
r.

We use the performance index

dc(Pm) = 1− tr{APmA>}/tr{AA>},
where Pm corresponding to the orthogonal projection of
the Â for the method m. We also consider the covariance
residual

Ψ̆ = Σ̂− ÂÂ>,
where Σ̂ = 1

T

∑T
k=1 yky

>
k . Notice, that Ψ̆ may differ from

the estimate of Ψ provided by the method, since Ψ̆ is not
constrained to have an specific structure.

Table 1 shows the mean values over the Monte Carlo
simulations of the execution time, dc(Pm), and ‖Ψ̆‖F .
The execution time is decomposed in self-time, and total
time, where the total time includes the execution time
required to get the initial estimate plus the self-time. PCA
and RPCA do not require an initial estimate. The EM
algorithm and Method 2, where initialized with the PCA
estimate, and Method 1 it is initialized with Method 2
estimate.

In Table 1 we notice that Method 1 provides the best
estimate of the subspace of A. Method 2 also provides
a good estimate of the subspace of A. Notice that EM
achieves in average the lowest value of ‖Ψ̆‖F . However,
EM algorithm doesn’t provides the best estimate of the
subspace of A. This is possible due to that Ψ is constrained
to have a diagonal structure.

As expected, Table 1 shows that Method 1 and Method 2
are computationally expensive compare to others methods.

Figure 1 shows the mean magnitude of Ψ̆ for all meth-
ods over the Monte Carlo simulations, denoted by Ψ̄ =

1/Nmc
∑Nmc

i=1 |Ψ̆i|, where in here | · | denotes the entry-wise
absolute value. The magnitudes are shown on a logarith-
mic scale. Figure 1b shows Ψ̄ for PCA, which produces a Ψ̄
matrix which is consistent with the assumption of diagonal
Ψ. Figures 1c-1d show the resultant Ψ̄ for the proposed



methods. We see that non-diagonal entries appear more
frequently than in other methods. Figure 1e shows Ψ̄ of
EM, that seems to be consistent with the assumption that
matrix Ψ is diagonal. Figure 1f shows Ψ̄ of RPCA, that
on average “discovers” a Ψ̄ diagonal, but in average does
not properly recover the non-diagonal entries.

6. CONCLUSION

We have presented a general approach to rank constrained
optimization. The approach can be applied to several
areas, such as, system identification, control, and signal
processing. The method is applied to Factor Analysis. In
this framework, the approach provides sufficient flexibility
to handle non-diagonal idiosyncratic covariance. The nu-
merical example has shown the efficacy of the approach.
In many cases it outperforms existing methods.
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J.C. Agüero, W. Tang, J.I. Yuz, R.A. Delgado, and G.C.
Goodwin. Dual time–frequency domain system identifi-
cation. Automatica, 48(12):3031 – 3041, 2012.

J. Bai. Inferential theory of factor models of large dimen-
sions. Econometrica, 71:135–172, 2003.

J. Boivin and S. Ng. Are more data always better for
factor analysis? Journal of Econometrics, 132(1):169–
194, 2006.
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